
 

Copyright © 2013 Core Avionics & Industrial Inc. All rights reserved. 

 

ARGUS MULTICORE SUPPORT 
 

White Paper 
Document # 11-146-10159 

 
sales@coreavi.com 
www.coreavi.com 

 

NOVEMBER 29, 2013 
 

  

Notice 
 
This document and the information contained herein are the property of Core Avionics & Industrial Inc. 
Any reproduction, disclosure or use thereof is prohibited except as authorized in writing by Core 
Avionics & Industrial Inc.  
 

 
Core Avionics & Industrial Inc. 

www.coreavi.com 

mailto:sales@coreavi.com
http://www.coreavi.com/


 White Paper  
 

 

 

© 2013 Core Avionics & Industrial Inc. All rights reserved. 
Page 1 of 7 

 

Table of Contents 
 
1. Introduction .............................................................................................................................................. 2 

2. Definition of CoreAVI’s Argus Graphics Driver .......................................................................................... 3 

2.1. Argus Support for More than One Graphics Application ................................................................... 3 

2.1.1. Multiple Application / Multi-Threaded (MAP) ............................................................................ 4 

2.1.2. Multiple Address Space (MAS) .................................................................................................... 4 

3. Support for Embedded Multicore Systems ............................................................................................... 5 

3.1. Symmetric Multiprocessing (SMP) ..................................................................................................... 5 

3.2. Asymmetric Multiprocessing (AMP) .................................................................................................. 5 

3.2.1. Indirect Rendering....................................................................................................................... 6 

3.2.2. Indirect Rendering with Hypervisor Support .............................................................................. 6 

 

 

 

 

 

 

  



 White Paper  
 

 

 

© 2013 Core Avionics & Industrial Inc. All rights reserved. 
Page 2 of 7 

 

1. Introduction 

The use of multicore processors is rapidly becoming the only available option for system manufacturers, 

as single-core processors have reached the physical limits of speed and complexity. If implemented 

properly, there are significant performance benefits to using multicore processors in the military and 

aerospace markets. The challenge is developing an intelligent software architecture to unlock the 

potential use of multicore processing, while maintaining a safety critical approach to supporting Federal 

Aviation Authority (FAA) and European Aviation Safety Agency (EASA) standards.  

Core Avionics & Industrial Inc. (CoreAVI) has successfully developed several unique approaches to 

enabling high performance and safety critical graphics on embedded platforms using multicore 

processors. CoreAVI’s graphics drivers allows customers the flexibility to use multiple processor cores in 

either symmetric, asymmetric, or bound multiprocessing environments. CoreAVI’s embedded graphics 

driver architecture enables embedded display manufactures to support the following: 

• Multiple independent graphics applications residing across multiple secure partitions bound 

to assigned processor cores 

• Multi-threaded graphics applications across a multicore processor 

• Multiple independent graphics applications running on multiple independent guest 

operating systems with their own dedicated processor core 

This technical paper provides a high level summary of CoreAVI’s architectural approaches to enabling an 

efficient, scalable and flexible use of multicore processing with embedded and safety critical graphics 

applications. 

 

  



 White Paper  
 

 

 

© 2013 Core Avionics & Industrial Inc. All rights reserved. 
Page 3 of 7 

 

2. Definition of CoreAVI’s Argus Graphics Driver  

Argus is CoreAVI’s graphics code base from which drivers / libraries are created that control various 

GPUs and exposes various OpenGL APIs to application programs. 

Argus exists as either a static or shared library, supports one or several graphics applications, and can be 

considered a device driver. 

As a device driver Argus controls the Graphics Processing Unit (GPU), such as the AMD Radeon E4690 or 

AMD Embedded G-Series SoC, and the device’s display controllers. 

As an OpenGL library Argus is used by graphics applications in an embedded environment to display 

graphics on one or more displays that may be utilizing one or more graphics processors. 

Figure 1  is block diagram showing the embedded software stack (green) which includes Argus and the 

embedded hardware (blue) of a typical embedded graphics system. 

Figure 1  Argus in a Single Core Embedded Graphics System 

In addition to OpenGL APIs, Argus exposes an additional five APIs to the application: 

• BIT: This API is used to invoke built-in tests and access the fault log. 

• EGL: This API is used to create and destroy windows and rendering contexts. 

• CoreAVI Display: This API is used to initialize and shutdown the display controller. 

• System Initialization: This API is used to initialize and shutdown / un-initialize the driver. 

• OS Helper: This API is used to access RTOS features from the application. 

2.1. Argus Support for More than One Graphics Application 

Two Argus variants are available to support more than one graphics applications.  One variant is referred 

to as Multiple Application / Multi-Threaded support (MAP) and the second is referred to as Multiple 

Address Space support (MAS). 

Single Core Processor and Memory

Graphics Application

Argus

Graphical Display(s) GPU and Display 

Controller Hardware

Real Time Operating 

System

API 1 API 2 API 3

API 4
API 5

Application Code

Argus Kernel Mode Driver

Argus Shaders

API 6



 White Paper  
 

 

 

© 2013 Core Avionics & Industrial Inc. All rights reserved. 
Page 4 of 7 

 

2.1.1. Multiple Application / Multi-Threaded (MAP)  

Argus supports multi-threaded graphics application(s) and multiple single-threaded applications in the 

same address space as shown in Figure 2. 

Figure 2  Multiple Application Support 

To support this, Argus allocates personal command and DMA buffers for each OpenGL context. 

Rendering commands are loaded into these context specific command and DMA buffers independent of 

other running threads using Argus. Serialization is used during critical sections of accessing the GPU or 

accessing global or shared data.  

2.1.2. Multiple Address Space (MAS) 

Argus Multiple Address Space (MAS) supports more than one single-threaded graphics application with 

each graphics application in its own address space (partition) as shown in Error! Reference source not 

found.. 

OR

RTOS

CPU

GPU

Argus (MAP)

Multi-threaded
Graphics Application

RTOS

CPU

GPU

Argus (MAP)

Multi-threaded
Graphics

Application

Graphics
Application

Graphics
Application

 ß                             Address Space                           à  ß                            Address Space                           à 



 White Paper  
 

 

 

© 2013 Core Avionics & Industrial Inc. All rights reserved. 
Page 5 of 7 

 

Figure 3  Multiple Address Space Support 

CoreAVI’s Argus MAS solution is a peer to peer implementation and exists in each application’s address 

space, performing synchronization and coordination on behalf of the graphics applications.  If a second 

partition tries to acquire a shared resource that a first partition has already locked, then the second 

partition waits until the first partition has finished with the resource and has unlocked it. 

Argus allocates personal command and DMA buffers for each OpenGL context ensuring each context can 

load rendering commands to its own buffer without waiting on other OpenGL contexts.  

Argus may exist as a shared object in a multi-partition environment. 

RTOS

CPU

GPU

Graphics
Application

Argus (MAS)

Graphics
Application

Graphics
Application

ß    Address Space 1     à ß    Address Space 2     à ß    Address Space 3     à 



 White Paper  
 

 

 

© 2013 Core Avionics & Industrial Inc. All rights reserved. 
Page 6 of 7 

 

3. Support for Embedded Multicore Systems 

3.1. Symmetric Multiprocessing (SMP) 

In typical Symmetric Multiprocessing a single RTOS manages all processor cores simultaneously and 

applications can float to any processor core. Utilizing the Argus MAS architecture described above and 

shown in Figure 4, Argus is able to support any number of partitioned applications in any use of the 

assigned processor cores. 

Figure 4  Embedded Multicore System with an SMP RTOS 

From an Argus MAS perspective there is no difference between the driver support SMP and BMP. In 

Bound Multiprocessing (BMP) a single RTOS manages all processor cores simultaneously, with each 

application locked to a specific core. 

3.2.  Asymmetric Multiprocessing (AMP) 

In Asymmetric Multiprocessing (AMP) a separate RTOS runs on each processor core. 

In a multicore system with an AMP RTOS, with or without a hypervisor, CoreAVI offers both indirect and 

direct rendering OpenGL graphics applications.  

Multi-threaded
Graphics

Application

RTOS – SMP/BMP

Core 1

GPU

Core 2

Graphics
Application

Multi-threaded
Graphics

Application

Argus (MAS+MAP)

ß  Address Space 1  à ß                              Address Space 3                                à ß Address Space 2  à 



 White Paper  
 

 

 

© 2013 Core Avionics & Industrial Inc. All rights reserved. 
Page 7 of 7 

 

3.2.1. Indirect Rendering  

CoreAVI employs an ArgusSC MAS / GLX client- server architecture as shown Figure 5.  Note the GPU is 

only visible to RTOS 1. 

Figure 5  Embedded Multicore System with an AMP RTOS 

3.2.2. Indirect Rendering with Hypervisor Support 

Argus MAS / GLX client-server architecture in which the GPU is only visible to the RTOS / core with the 

GLX Server as shown in Figure 6. 

 

Figure 6  Hypervisor - Argus MAS GLX Client / Server Solution 

GLXServer

RTOS 1

Core 1

GPU

Core 2

Graphics
Application Graphics 

Application

Argus ( MAS)

RTOS 2

GLXClient 
Library

GLX 2 EGL

ß                             Address Space 3                              à ß                 Address Space 2                     à ß  Address Space 1  à 

RTOS 1

GPU

RTOS 2

Hypervisor

GLXServerGraphics
Application Graphics 

Application

Argus ( MAS)

GLXClient Library

GLX 2 EGL

Core 1 Core 2

ß                           Address Space 3                          à ß                Address Space 2                    à ß Address Space 1  à 


